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H-3, at 8 4.64 (br dd, / = 3.0, 1.5 Hz),15 as the equatorial ori
entation, indicating the right stereochemistry for maytansinol (2). 

Similarly, treatment of the epoxy aldehyde 20 with lithium 
enolate of EtOAc (5 equiv in THF, -78 0C, 30 min) now produced 
the adduct as almost all single isomer 27a (Scheme IV). Its 
hydroxy group was protected with Me2-J-BuSiCl [5 equiv and 
imidazole (12 equiv) in DMF, 35 0C, 12 h], and then the car-
boxylic ester 27b was hydrolyzed with a mixture of 3 N 1:5:2 
KOH-EtOH-THF (45 0C, 7 h) to 27c (52% overall yield from 
20). Cyclization of the acid 27c was achieved with mesitylene-
sulfonyl chloride2b (20 equiv !-Pr2EtN (20 equiv and H-Bu4NOH 
in benzene, 40 0C) to afford 28a [1H NMR 5 1.00 (Me-6, d, J 
= 7 Hz), 1.08 (Me-4), 1.96 (Me-14), 2.94 (H-5, d, J = 9 Hz), 
3.72 (H-IO, d, J = 8.5 Hz), 5.24 (H-13, d, / = 10 Hz), 5.40 (H-Il, 
dd, 7 = 1 5 , 8.5 Hz), 6.46 (H-12, dd, / = 15, 10 Hz), 6.56, 6.72 
(Ar 2 H, s); m/z 795 (M+)] in 53% yield. Desilylation of 28a 
was achieved with W-Bu4NF (5 equiv) only in the presence of 
MeCN as solvent with THF (2:1), [60 0C, 12 h] to form the diol 
28b in 77% yield [m/z 567 (M+); IR v 3500, 1642 cm"1]. The 
hydrolysis of the dimethyl ketal 28b with a mixture of 1:3:1 
AcOH-THF-H2O (35 0 C, 11 h) to give in quantitative yield the 
ketone 29 [IR v 1724, 1644 cm"1; 1H NMR (200 MHz) 5 0.87 
(Me-4), 1.16 (Me-6, d, / = 6.6 Hz), 2.55 (H-5, d, J = 9.5 Hz), 
2.76 (H-8, dd, / = 17.5, 3.0 Hz), 6.81, 6.83 (Ar 2 H, d, J = 2 
Hz); m/z 521 (M+)]. Treatment of the keto diol 29 with p-
nitrophenyl chloroformate16 [4 equiv with Py (4 equiv) in dry 
CH2Cl2,0 0C 15 min] and then with NH3 [in MeOH with cooling, 
20 min] produced maytansinol (2) [1H NMR (400 MHz) 5 0.84 
(Me-4), 1.25 (H-8), 1.29 (Me-6, d, J = 6.5 Hz), 1.54 (H-6, m), 
1.69 (Me-14), 2.10 (H-2, dd, J = 13.5, 2.0 Hz), 2.15 (H-8, d, 
J = 14.0 Hz), 2.28 (H-2, dd, J = 13.5, 11.0 Hz), 2.57 (H-5, d, 
J = 9.5 Hz), 3.11, 3.47 (2 H-15, d, J = 12.5 Hz), 3.20 (OMe-10), 
3.35 (NMe), 3.49 (H-IO, d, / = 9.0 Hz), 3.54 (H-3, dd, J = 11.0, 
2.0 Hz), 3.98 (ArOMe), 4.34 (H-7, t, J = 11.0 Hz), 5.51 (H-Il, 
d d , / = 15.0, 9.0Hz), 6.14 (H-13, d, / = 11 Hz), 6.43 (H-12, 
dd, J = 15.0, 11.0 Hz), 6.80 (Ar H, d, / = 2 Hz), 6.98 (or 7.02)17 

(Ar H, d, J = 2 Hz)] in 67% overall yield. HPLC and TLC of 
(i)-maytansinol were also superimposable17 with the authentic 
maytansinol. 

We have now accomplished the total synthesis of (±)-may-
tansinol. The total synthesis of racemic maytansinol involves the 
solution of the crucial problem that all of the asymmetric centers 
were prepared ahead of 19-membered lactam ring closure, thus, 
that only one asymmetric center was present in the original starting 
material, acrolein dimer, and all other six asymmetric centers in 
2 were intramolecularly induced in high stereospecificity. We 
have also finished the syntheses of (±)-maysine and (±)-N-
methylmaysenine along this line.13 
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The structure of the furan-HCl complex in the gas phase has 
been determined from measurements of rotational transition 
frequencies. Analysis of the data indicates a planar structure for 
the complex with an oxygen-chlorine distance of 3.27 (1) A. 

It is well-known that furan has a high probability of being 
protonated in acidic solutions. Molecular orbital calculations' 
and calorimetric studies2 for furan-HX complexes have been 
carried out. Furan has a conjugated ir-electron system and an 
oxygen atom, so complexes of this type should provide information 
on the relative importance of these properties for hydrogen-bond 
formation. Actual structure measurements on these complexes 
are helpful in evaluating the numerous molecular orbital calcu
lations on hydrogen-bonded complexes. 

The microwave rotational transitions were observed by using 
a pulsed-nozzle Fourier transform spectrometer developed by Balle, 
Flygare, and co-workers.3,4 A gas mixture of 3% furan plus 3% 
hydrogen chloride in argon was pulsed into the evacuated mi
crowave cavity consisting of 28-cm diameter spherical mirrors. 

The "free induction decay" emission signal following the mi
crowave pulses was digitized, averaged, and Fourier transformed 
to obtain the spectra. Transtions observed for furan-H35Cl were 
3rj3 ~* 404> 4]4 —*• 515, 404 —• 505, 423 —+ 524, 422 —*• 523, 413 —* 514, 
Sis """* 6i6, 505 -* 606, 524 -— 625, 523 ->- 624, and 514 —>• 615. Hy-
perfine structure due to the 35Cl quadrupole coupling was observed 
on all transitions and aided in the assignment of rotational 
quantum numbers to the observed transitions. The observed 
spectral line positions followed the pattern expected for a planar 
molecule. 

The line centers were fit by using the rotational constants A, 
B, and C and distortion constants Z)JK and D1 as adjustable pa
rameters. Values obtained are A = 9499 (26) MHz, B = 1003.93 
(1) MHz, C = 904.32 (1) MHz, DJK = 228.892 (2) kHz, and D1 

= 0.24 (17) kHz. 
The inertial defect is 2.25 amu A2, which is not excessively large 

for a planar complex of this type. Similar values were obtained 
for the planar "T"-shaped complexes involving acetylene and 
hydrogen halides. The experimentally determined geometries of 
HCl5 and furan5,6 were used in order to obtain the structure of 
the complex. It would be expected that the H-Cl bond length 
would increase slightly on complex formation, but since the H 
atom is close to the center of mass of the complex, this would not 
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Figure 1. Structure of the furan-HCl complex. The complex is planar. 
significantly affect the reported oxygen-chlorine distance. 

The rather short oxygen chlorine distance of 3.27 A and small 
value observed for D} indicate strong binding between furan and 
HCl. If the H-Cl distance were to remain at the free molecule 
value of 1.3 A, the O---H hydrogen bond length would be 1.97 
A. The corresponding distance is 2.3 A for benzene-HCl.7 The 
structure of the complex is shown in Figure 1. The observed 
hydrogen bond length of 1.97 A is significantly longer than the 
calculated value1 of 1.783 A. Molecular orbital calculations do 
not appear to give as accurate structures for complexes as for the 
free molecules. The fact that the observed A rotational constant 
of 9499 MHz for the complex is very close to the A rotational 
constant of 9447 MHz for free furan strongly suggests the C2v 
structure shown in Figure 1 with the HCl along the a axis. We 
have obtained data on the DCl and H37Cl isotopic species, and 
these data also support the structure given. Work is continuing 
on this project. 
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Photoexcited aromatic hydrocarbons form exciplexes with a 
variety of donors and acceptors.2 Exciplexes of order higher than 
2 are also known which may play important roles in photochemical 
reactions.3"12 Light-induced electron transfer in molecular 
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complexes of multiple components has been implicated as the 
primary step in photosynthesis.13 However, properties of excited 
molecular complexes and exciplexes of higher order remained 
substantially uncharacterized, particularly the role of such com
plexes in charge transfer.14 So that the formation and decay of 
such exciplexes could be probed, polychromophoric molecules of 
general structures 1 and 2 were synthesized and their spectroscopic 

Ph CH 3 

la, X = H 
Ib 5X = OCH3 

Ic1X = CH3 

2a, X = H 
2b, X = OCH3 

properties examined. We concluded that intramolecular ternary 
exciplexes were formed from 1 under certain experimental con
ditions, and we were able to determine the factors governing their 
formation and decay. 

Compounds la-c were synthesized by a conventional method.15 

Compounds 2a,b were obtained by known routes.16 Fluorescence 
spectra of these compounds were measured with a Perkin-Elmer 
MPF-4 spectrofluorimeter equipped with an electronic corrected 
spectrum unit and a thermostatic sample compartment, and 
fluorescence lifetimes were determined via the time-correlated 
single-photon-counting technique with an apparatus described 
elsewhere.17 The fluorescence data are listed in the Table I. 

Charge-transfer interaction between components in exciplexes 
plays an important role in both their stability and decay.18"20 In 
solvents of low to medium polarity, this interaction may be an
alyzed quantitatively by the dependence of fluorescence maximum 
on the solvent polarity according to the following equation: 

P« = ^x(O) - (nj/hca>)(f- W) (1) 

where va is the fluorescence maximum of the exciplex in a given 
solvent (in cm"1), PM(0) is the maximum in vacuo, ̂ 6x is the dipole 
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